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Local transition functions of elementary cellular automata show different 
tendencies to replicate parts of a configuration in a later generation. This is seen 
as regularities in the time-space diagram. This replication depends on both the 
configuration and the local transition function. A possibility to isolate the 
influence of the local transition function is shown. 
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1. INTRODUCTION 

Let {0, l }Z  be the set of  functions from the integers Z to the Boolean 
values {0, 1}; the elements of  this set are also called "configurations." 
Elementary  cellular a u t o m a t a  are functions F from { 0, 1 } z to { 0, 1 } z with 
the further restr ict ion that  there is a local transition function f :  
{ 0, 1} 3__. { 0, 1 } such that  the following formula hols: 

V c e { 0 , 1 } Z V z ~ Z  F ( c ) ( z ) = f ( c ( z -  l ) , c ( z ) , c ( z  + l ) )  

If c is a configurat ion and c(z) -- v, we say that  cell z in configuration c has 
value v. 

The repeated appl ica t ion  of  F to an initial configurat ion c o yields a 
sequence Co, c~, c2 .... of  configurations.  The existence of  the local t ransi t ion 
function implies that  the value of cell z in configurat ion c,., i > 0, depends 
only on the value of  cell z and its direct neighbors  in configurat ion ci_ t, 
and  the way it, depends  on these values is the same for all cells. 
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It is easily seen that there are exactly 256 local transition functions for 
elementary cellular automata .  They can numbered in the scheme of ref. 1; 
the function with number  x will be denoted f,. in this paper. We will write 
the index in sedecimal notation. 

If f :  { 0, 1 } 3 __, { 0, 1 } and i ~ N, i/> 1, then we denote by f i  the function 
which comprises the repeated application o f f :  

f ' :  {0, 1}2'+'--* {0, 1} 

f i ( k - i ,  k_ i+l  ..... k i _ l ,  ki) 

( f ( k _ l , k o ,  k l )  if i = 1  

= ) f ( f ' - I ( k  i ..... k,_2),  
) f ' - ' l k_ ,+ ,  ..... k,_,), 
1, f ' - I ( k _ i +  z ..... k,)) otherwise 

The effects of  a repeated application of an elementary cellular au toma ton  
F to a given configuration in a finite range of cells can be visualized with 
a space/t ime diagram. The values of  the finite range of cells are displayed 
as a sequence, and the corresponding finite sequences of  states of  succeed- 
ing configurations are dipslayed as a sequence of values in the next row. In 
Fig. 1 some examples are displayed, with dark spots for ones and light 
spots for zeros. In all these diagrams,  the same initial configuration co has 
been used, Furthermore,  Co is spatial periodic with a period of 72, which 
means that for all z ~ Z ,  Co(Z)=Co(Z+72). Because of this it suffices to 
display a range of 72 cells. 

Diagrams like the one in Fig. 1 suggest the idea that  with the applica- 
tion of some local transition functions, a configuration tends to be repeated 
or shifted after a fixed number  of  steps, whereas under the application of 
other transition functions, there is no repetition. This phenomenon depends 
presumably on both the local transition function and the initial configura- 
tion. 

Fig. I. Selected space/time diagrams with the same spatial periodic initial configuration and 
different local transition functions. 
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In this paper, the influence of the transition function alone is analyzed 
with the help of the entropy of regular languages. (2) It is demonstrated that 
the set of configurations which are reproduced by a given local transition 
function f in a given number g of steps with a given shift v to the left or 
to the right can be expressed as a regular language. The greater the entropy 
of this language, the greater the tendency of the local transition function to 
show repetition in the given number of steps and the given shift. This 
model of replication of configurations is called the one-phase model. 

The appearance of some of the space/time diagrams is not very well 
explained by this model, because it does not take into account the 
possibility that under application of some local transition functions, the set 
of configurations which can occur after some steps is far smaller than the 
initial set of all configurations. If only a small set of configurations is 
repeated, but all other configurations, after a small number of steps, are 
transformed into one of these, the space/time diagram might look regular 
even if only a small number of configurations is repeated by the function. 
foo is an extreme example of this case. 

For these conditions, the entropies of another set of regular languages 
can be considered: These express the configurations which, under applica- 
tion of a given application function f,  after a given number of steps go, 
yield configurations which are repeated in g~ more steps with a shift of v. 
If many initial configurations yield repeating configurations, the corre- 
sponding entropies are big, even if of the initial configurations themselves 
only a few are repeated. This model of replications is called the two-phase 
model. 

2. S IMILAR APPROACHES 

Wolfram (3) considers the entropies (or, more exactly, the greatest 
eigenvalues) which can be associated to the regular languages describing 
the configuration a transition function of a cellular automaton can yield 
after a fixed and finite number of steps. This means that Wolfram is inter- 
ested in the generability of configurations; this paper, in contrast, tries to 
characterize systematically fixed points of a given transition function. 

Similar approaches look specifically and systematically at fixed points, 
but either restrict themselves to a special class of especially easily treatable 
transition function, the so-called "linear transition functions, ''(~~ or look 
only at space-periodic initial configurations (so that the configuration 
space is always finite and, after a finite transient, a limit cycle of configura- 
tions is reached), (4) make both restrictions, (5) or consider special transition 
functions which, in some sense, can be reduced to linear transition 
functions. (6) 
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This paper, in contrast, restricts its scope neither only to linear cellular 
automata nor only to space-periodic initial configurations. But another, 
regrettably quite severe restriction follows from this: In this work, we will 
not be able to characterize the limit sets of the considered cellular 
automata. For the general case, this is very plausible, since it has long been 
known that one-dimensional cellular automata with a state set and a 
neighborhood which are big enough (with some possible restrictions for 
one or the other) are, with a not too strange-looking definition of universal 
computability, computationally universal. But if the state set is restricted to 
two elements and the neighborhood to the described three, it is not known 
if there is an acceptable definition of universal computability that can be 
fulfilled by the model (and, what complicates the matter, "acceptable 
definition of universal computability" is not a very precise concept). Even 
disregarding the latter problem, we have to say that we do not know very 
much about the type of cellular automata considered in this paper. Perhaps 
more can be known about limit sets of this type of cellular automata. 

3. THE ONE-PHASE MODEL 

The one-phase model depends on the following theorem: 

T h e o r e m  3.1. Let f :  {0, 1}3~  {0, 1} be a local transition function 
of an elementary cellular automaton, F the corresponding global transition 
function, g e N  a number of steps, v ~ Z ,  Ivl<~g a shift. Let 
C ( f , g , v ) ~ _ { O ,  1} z be the set of configurations which are repeated by 
application o f f  for g steps with a shift of v, or, more formally, 

C(f, g, v) = {c e {0, 1 } z: Vz e Z Fg(c) (z  + v) = c(z)} 

Then the set L of all finite words formed by consecutive symbols of any 
configuration c e C(f, g, v) is a regular language. 

Proof.  For the proof, a finite automaton A(f, g, v) which recognizes 
exactly L is constructed. (7) The construction is analogous to the construc- 
tion of the finite automaton for the recognition of words in generable 
configurations~3): 

�9 The set of states T of the finite automaton is the set of 2g-tuples of 
bits. 

�9 The set E of input symbols for the finite automaton is the set of bits. 

�9 For the definition of the transition function fi: T x E - - * 2  r of the 
finite automaton we use a function (folg): T x E - - - ,  {0, l} 2g, with 

folg(t, e) = ( / 2 ,  t3 . . . . .  12g - 1, 12g - I ,  12g  , e) 
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with the abbreviation t = (t~, t2 ..... t2g). For every state t and input 
symbol e, folg yields the next state. As another abbreviation, we use 
w :=fg(t~, t~,..., t2g, e) and t2g§ :=e. We have 

~(t, w) = { folg(t, e): e~  {0, 1}, w = tg+j_ ,,} 

We define recognition of a word by this nondeterministic finite 
automaton as the existence of a path whose labels build up the word. 

It is easily seen that A ( f , g , v )  recognizes exactly the finite 
subsequences of configurations which are repeated in the prescribed 
way. �9 

By the construction in ref. 2, an entropy can be computed for the regular 
language recognized by A(f, g, v). This entropy is the dyadic logarithm of 
the greatest eigenvalue of a matrix computed from the transition matrix of 
the deterministic version of the finite automaton A(f, g, o). In this paper, 
we will give these greatest eigenvalues themselves, and not their logarithms. 
These eigenvalues can be interpreted as a mean of the number of 
possibilities in which a very long word which is in the recognized language 
can be extended by exactly one letter at one end so that the result again 
is a word of the language. These eigenvalues are therefore less than or 
equal to two, since this is the cardinality of the alphabet { 0, 1 }, and greater 
than or equal to zero. If the eigenvalue is zero, there is no word which is 
repeated with the given parameters; if the eigenvalue is one, there is just 
one possibility of extending a very long word; in ref. 7 is has been shown 
that in this case the repeated configurations are spatially periodic. And if 

Ox0O: 1:  1 1 1 

2 :  1 1 1 1 1 

3 :  1 I 1 1 1 1 

4 : 1  1 1 1 1 1 I 

0 2 :  1:  1 . 4 6 6  1 1 

2 :  1 . 4 6 6  1 1 1 1 

3 :  1 , 4 6 6  1 1 1 1 1 

4 : 1 . 4 6 6  1 1 t 1 1 1 

09 :  1:  0 0 0 

2 :  1 1 I 1 1 . 3 6  

3:  1 1 . 3 7 5  1 1 0 1 

4:  I 1 1 1 1 1 1 

4 b :  1: 1 

2 :  1 1 

3:  1 1 1 
4 : 1  1 1 1 

0 1 :  1:  

2 :  1 

1 3 :  1 1 

1 I 4 :  | I I 

6 6 :  1 :  

2 :  1 

I 3 :  1 1 

1 1 4 : 1  1 1 

16 :  1:  

2 :  1 

3 :  1 0 1 

1 1.38 4 : 1  1 . 0 9 7  1 

1 o 

1 1 1 

1 1 1 I 

1 1 1 1 1 

0 0 0 

I 1 . 6 1 8  1 1 

O 0 0 1 1 

1 I . t ; 1 8  1 1 I 

1 1 1 

I 1 1 1 

1 1 I 1 1 

1 1 1 1 1 1 

1 1 1 

1 1 1 1 

1 I 1 1 | 

1 1 . 2 5  1 1 1 .097  I 

Fig. 2. Maximal eigenvalues of regular languages which represent sets of configurations 
which are repeated under a application of a given local transition function after a given 
number of steps with a given shift. The first numbers in the first lines are the sedecimal codes 
of the local transition functions, the values for the different shifts -g, . . . ,  g for a single number 
g of steps are given in a row. Compare Fig. 1. 

8 2 2 / 7 7 / 3 - 4 - 2 5  
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the eigenvalue is two, then all configurations are repeated with the given 
parameters. All other eigenvalues lie between one and two. 

If, for a number of steps, the maximal eigenvalue for one or two shifts 
is greater than for the other, we expect the corresponding movements to 
dominate in the space/time diagram of the cellular automaton. If all values 
are the same, we expect no movement to dominate; if eigenvalues are one 
or zero for a shift, we expect (almost) no noticeable movement with the 
corresponding parameters. 

Figure 2 gives eigenvalues for the functions of Fig. 1 for I <~ g ~< 4 and 
--g<~v<~g. 

4. THE T W O - P H A S E  M O D E L  

The tables in Fig. 2 do not throw light on the dissimilarity of the 
space/time diagrams for functions foo and f66. Figure 1 makes it clear that 
it is desirable to discriminate between the functions. The problem with the 
eigenvalues of Fig. 2 is that it is not considered that under application of 
foo, only one homogeneous configuration can occur after step 1, that this 
configuration is therefore repeated ever again, and that because of the 
homogeneity, it is repeated with all possible shifts. This suggests the 
development of a two-phase model: The series of configurations is split into 
two phases: a first phase of go steps in which we are not interested in 
repetition phenomena but only in a possible restriction in the number of 
possible configurations, and a second phase in which we look again for 
repetition phenomena. For this method, we use the following theorem: 

Theorem 4.1. Let f :  {0, 1} s._, {0, 1} be a local transition function 
of an elementary cellular automaton, F the corresponding transition 
function, go, g ~ N  numbers of steps, v~Z, [vl<~gt a shift. Let 
C(f, go, g~, v) ___ {0, 1 } z be the set of configurations which, after go applica- 
tions off ,  yield a configuration which is repeated by application of f for g~ 
steps with a shift of v, or, more formally, 

C(f, go, g , ,  v) = {c ~ {0, 1} z: V: e Z FX'(FX'~ + v) = Fg"(c)(z)} 

Then the set L of all finite words formed by consecutive symbols of any 
configuration c e C(f, go, g~, v) is a regular language. 

Proof. For the proof, a finite automaton A(f,go,g~,v ) which 
recognizes exactly L is constructed. The construction is again analogous to 
the construction of the finite automaton for the recognition of words in 
generable configurations. Let g = go + g ~. 
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OO: 1: 2 2 2 01: 

2 :  2 2 2 2 2 :  

3 :  2 2 2 2 2 2 2 3 :  

4 : 2  2 2 2 2 2 2 2 2 4 :  

02: t: 2 1 . 6 1 8  1 . 6 1 9  6 6 :  

2 :  2 1 . 6 1 8  1 . 6 1 8  1 . 6 1 9  1 . 6 1 8  2 :  

3: 2 1 ,618 1 .618 1.618 1 .618 1 .618 1 .618 3: 
4 : 2  1.618 1 ,618 1 ,618 1,618 1 .618 1 ,618 1 .618 1.618 4:  

0 9 :  1: 0 0 0 16 :  

2 :  1 , 3 2 5  1 . 3 2 6  1 . 3 2 5  1 . 3 2 5  1 . 6 4 7  2 :  

3:  1 . 1 4 4  1 . 6 0 9  1 . 0 9 1 1  O 1 . 2 7 2  O 3 :  

4 : 1 . 3 2 5  1 . 3 2 5  1 . 3 2 5  1 . 3 2 5  1 . 3 2 5  1 , 3 2 6  1 . 3 2 5  1 . 3 2 5  1 . 6 4 7  4 :  

I :  0 0 0 
1 .839 1.839 2 1 .839 1.839 

1 1 0 0 0 1 t 
1.839 1 .838 1.839 1 . 8 3 9  2 1 .839 1.839 1.839 1.839 

1: I 1 1 

1 I I t 1 
l 1 1 1 I 1 1 

I 1 1 1 1 I 1 l t 

l :  t , 466  1 .466 1 .466 
t , 466  1,466 1,466 1 .466 1 ,466 

1 .466 1.466 1,466 1.466 1 ,466 1,466 1.466 
1 ,466 1 .466 1,466 1,466 1.466 1.466 1 .466 1.466 1.466 

4b: t :  I 1 0 

2 :  1 I l t 1 

3 :  1 1 1 1 1 1 I 

4 :  I 1 1 1 1 1 1 I I 

Fig. 3. Maximal eigenvalues of regular languages which represent sets of configurations 
which, in two steps, are transformed into configurations which are repeated under application 
of a given local transition function after a given number of steps with a given shift. For the 
notation, compare Fig. 2. 

�9 The set of  states T of  the finite automaton is the set of 2g-tuples of 
bits. 

�9 The set E of input symbols for the finite automaton is the set of bits. 

�9 With the abbreviation t = ( t ~ ,  t2 . . . . .  leg), we define the transition 
function 6 of  the finite automaton: 

6(t, e') = {(t2 . . . . .  tEg, e ) :  e '  =fg( t l  . . . . .  tzg, e) ^ e' 

=fg~  +g, _ , .  . . . . .  t ,  + . ~ , -  1 '+ 2g0)}  

It is easily seen this nondeterministic finite automaton recognizes L. �9 

For the automaton A(f ,  g o , g  ~, v), we can again calculate the maximal 
eigenvalues of  the transition matrix. In Fig. 3, the eigenvalues are given 
for the same parameters as in Fig. 2, with the exception that g o = 2 .  
Considering these values, the difference between, for example, foo and f66 
becomes apparent. 

The two-phase model, even if it seems to be superior to the one-phase 
model, has a defect: the choice of go, the number of  steps which are made 
before the replication is considered, is more or less arbitrary. Our missing 
knowledge about limit sets of  the considered type of cellular automata is 
the deeper source of  this defect. 

5.  O T H E R  C H A R A C T E R I Z A T I O N S  

Other properties of  the finite automaton can be used for the charac- 
terization of  the development of  cellular automata in infinite configura- 
tions. The author tv) has given some characterizations of  this type. They all 
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consider the reduced and deterministic version of the constructed nondeter- 
ministic automata as described in this paper or by Wolframt3): 

�9 The number of not-recognizing states is always zero or one; if it is 
zero, then the automaton has exactly one state (which is, of course, 
recognizing), and all configurations are recognized. If it is one, all 
transitions from the not-recognizing state go into this same state. 

�9 For 72 of the considered transition functions, every initial configura- 
tions leads after at most two steps into a cycle of configurations 
which also has at most two steps. For all other 2 5 6 - 7 2 =  184 
transition functions, for every g E N there is an initial configuration 
such that even after g steps, no cycle of configurations is reached. 
The first part of this proposition can be deduced from the finite 
deterministic reduced versions of the automata constructed by 
Wolframl3): the automaton for two steps is the same as the one for 
four steps for 72 transition functions. 

�9 If the number of transitions into recognizing states is equal to the 
number of recognizing states, then the set of limit configurations 
is finite. In this case, the restriction-of the graph to recognizing 
states and transitions into recognizing states yields a number of 
disconnected subgraphs; this number is the number of different limit 
sets (not regarding differences through shifts). 

The procedure which has been used in this paper has another 
character than the results listed above, because it abstracts from differences 
between formal languages which result from inclusion and exclusion of a 
finite number of finite words. It is hoped that this further abstraction, 
which I am perhaps allowed to call a more "statistical" approach, yields the 
structure of the set of transition functions in a more orderly way. 

6. S U M M A R Y  

In this paper the use of maximal eigenvalues of transition matrices for 
the description of inherent replication properties of local transition func- 
tions of elementary cellular automata was investigated. Two models were 
developed which allowed the characterization of different local transition 
functions. 
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